This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

STRUCTURES OF COPPER(I) AND ZINC(II) COMPLEXES WITH N,N-BIS(2-PYRIDINYL)THIOUREA (BPT)

Yaoting Fan^a; Huijie Lu^a; Hongwei Hou^a; Zhengmin Zhou^a; Qinghuan Zhao^a; Linpin Zhang^a; Fenghong Cheng^a

^a School of Chemistry and Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China

To cite this Article Fan, Yaoting , Lu, Huijie , Hou, Hongwei , Zhou, Zhengmin , Zhao, Qinghuan , Zhang, Linpin and Cheng, Fenghong(2000) 'STRUCTURES OF COPPER(I) AND ZINC(II) COMPLEXES WITH *N*,*N*-BIS(2-PYRIDINYL)THIOUREA (BPT)', Journal of Coordination Chemistry, 50: 1, 65 – 72 **To link to this Article: DOI:** 10.1080/00958970008054925

URL: http://dx.doi.org/10.1080/00958970008054925

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 2000, Vol. 50, pp. 65-72 Reprints available directly from the publisher Photocopying permitted by license only © 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in Malaysia.

STRUCTURES OF COPPER(I) AND ZINC(II) COMPLEXES WITH N,N'-BIS(2-PYRIDINYL)THIOUREA (BPT)

YAOTING FAN*, HUIJIE LU, HONGWEI HOU, ZHENGMIN ZHOU, QINGHUAN ZHAO, LINPIN ZHANG and FENGHONG CHENG

School of Chemistry and Chemical Engineering, Zhengzhou University, Zhengzhou 450052, Henan, P.R. China

(Received 10 May 1999)

Copper(I) and zinc(II) complexes with N,N'-bis(2-pyridinyl)thiourea (BPT), [Cu(BPT)₂]ClO₄ (1) and [Zn(BPT)₂](ClO₄)₂ (2) were synthesized by reaction of M(ClO₄)₂ (M=Cu, Zn) with BPT in methanol solution. The crystal structures of complexes (1) and (2) were characterized by X-ray diffraction: (1) is triclinic, space group PI, with a=10.162(2), b=14.483(6), c=9.496(2)Å, $\alpha=105.80(2)^{\circ}$, $\beta=106.94(2)^{\circ}$, $\gamma=82.71(3)^{\circ}$, V=1284.4(7)Å³, Z=2, and final R=0.047, $R_w=0.061$; (2) is monoclinic, space group C²/c, with a=15.15(1), b=6.299(3), c=30.16(1)Å, $\beta=93.49(7)^{\circ}$, V=2872(2)Å³, Z=4, and final R=0.049, $R_w=0.070$. Both of the complexes exhibit novel structures. Two N atoms and two S atoms from two BPT groups coordinate to one M atom. The M atom shows distorted tetrahedral geometry. IR spectra and thermoanalyses of BPT and its complexes (1) and (2) are briefly discussed.

Keywords: Cu(I) and Zn(II) complexes; synthesis; thiourea; crystal structure

INTRODUCTION

Thiourea complexes with transition metal atoms comprise one of the most interesting areas in chemistry because of the special roles played by these kinds of compounds in biological processes.¹⁻³ The compounds have been studied,⁴⁻⁶ but pyridinyl thiourea-containing compounds have received little attention.⁷ In this paper, we present a new thiourea compound, N,N'-bis(2-pyridinyl)thiourea (BPT), and its complexes [Cu(BPT)₂]ClO₄ (1)

^{*} Corresponding author.

Y.T. FAN et al.

and $[Zn(BPT)_2](ClO_4)_2$ (2); we have determined the crystal structures of the two complexes. IR spectra and thermoanalyses are discussed.

EXPERIMENTAL

Infrared spectra were recorded with Perkin Elmer 710 spectrophotometer with pressed KBr pellets. Elemental analyses were performed on a Carlo-Erba 1106 analyzer. Thermoanalysis were recorded on a Rigaku instrument. Proton NMR spectra were recorded on a BRUKER FT-80m NMR spectrometer.

 $Cu(ClO_4)_2$ was prepared by reaction of CuO with HClO₄. Other chemicals were purchased as AR reagents and were used without further purification.

Preparation of Compounds

N,N'-bis(2-pyridinyl) thiourea (BPT)

Sodium hydroxide (0.5 g) was dissolved in anhydrous ethanol (50 ml), and 2-aminopyridine (9.4 g, 0.1 mol) and carbon disulfide (4.5 g, 0.06 mol) were added. The mixture was refluxed for 6 h. Upon cooling, solid product formed. After recrystallization from anhydrous ethanol, 8 g of white acicular crystals of [PyNHC(S)NHPy] were obtained with a melting point of 160°C. Anal. Calcd. for C₁₁H₁₀N₄S (%): C, 57.39; H, 4.35; N, 24.35. Found: C, 57.79; H, 4.45; N, 24.13. ¹H NMR (DMSO): δ 7.09–7.25 (m, 2H), 7.74–7.95 (m, 2H), 8.33–8.42 (m, 2H), 12.69 (br, s, 2H).

$[Cu(BPT)_2]ClO_4$ (1)

Cu(ClO₄)₂ (0.01 mol) and BPT (0.03 mol) were dissolved in methanol and the solution of BPT added dropwise to the solution of Cu(ClO₄)₂ at room temperature. The mixture was stirred for 30 min and filtered. Red prismatic crystals were obtained several hours later. *Anal.* Calcd. for C₂₂H₂₀ClCu-N₈O₄S₂ (%): C, 42.34; H, 3.21; N, 17.89. Found: C, 42.44; H, 3.25; N, 17.96.

$[Zn(BPT)_2](ClO_4)_2$ (2)

 $Zn(ClO_4)_2$ (0.02 mol) and BPT (0.01 mol) were dissolved in methanol respectively and the solution of BPT added dropwise to the solution of $Zn(ClO_4)_2$ at room temperature. The mixture was stirred for 30 min and filtered. White crystals were obtained after the filtrate was allowed to stand at room temperature for one day. *Anal.* Calcd. for $C_{22}H_{20}Cl_2N_8O_8S_2Zn$ (%): C, 36.44; H, 2.76; N, 15.46. Found: C, 36.82; H, 2.85; N, 15.70.

X-Ray Crystal Structure Determination

A prismatic crystal was mounted on a glass fibre. All measurements were made on a Rigaku AFC7R diffractometer for complex (1) and a Rigaku RAXIA-IV imaging plate area detector for complex (2) with graphitemonochromated MoK α radiation. Data were collected using the $\omega-2\theta$ scan technique. A linear correction factor and an empirical absorption correction were applied. Data were also corrected for Lorentz and polarization effects. The structure was solved by direct methods and Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement was based on observed reflections ($I > 3.00\sigma(I)$). All calculations were performed using the teXsan⁸ crystallographic software package of the Molecular Structure Corporation. Crystal data for the two complexes are listed in Table I. Table II gives selected bond lengths and bond angles, and lists of atomic positions are given in Tables III and IV.

	Complex (1)	Complex (2)
Empirical formula	C22H20ClCuN8O4S2	C22H20Cl2N8O8S2Zn
Formula weight	623.57	724.85
Crystal system	Triclinic	Monoclinic
Space group	PĪ	C2/c
Unit cell dimensions	a = 10.160(2) Å	a = 15.15(1) Å
	b = 14.483(6)Å	b = 6.299(3)Å
	$c = 9.496(2) \text{\AA}$ $\alpha = 105.80(2)^{\circ}$	c = 30.16(1)Å
	$\beta = 106.94(2)^{\circ}$ $\gamma = 82.71(3)^{\circ}$	$\beta = 93.49(7)^{\circ}$
Volume, Z	1284.4(7)Å ³ , 2	2872(2)Å ³ ,4
Density	$1.612 \mathrm{g/cm^3}$	$1.676 {\rm g/cm^3}$
F(000)	636	1472
Crystal size	$0.20 \times 0.20 \times 0.30 \mathrm{mm}$	$0.50 \times 0.30 \times 0.30$ mm
μ(ΜοΚα)	$11.64 \mathrm{cm}^{-1}$	$12.48 \mathrm{cm}^{-1}$
20max	49.9°	55.0°
No. of reflections measured	3710	2606
No. of observations $(I > 3.00\sigma(I))$	2723	1852
No. of variables	365	196
Reflection/parameter ratio	7.46	9.45
Goodness of fit indicator	2.38	1.21
Residuals: R; R,	0.047; 0.061	0.049; 0.070
Weights	$w = \sigma^2 (F_o)^{-1}$	$w = \sigma^2 (F_o)^{-1}$
Max. peak in final diff. map	0.44 eÅ ⁻³	0.48 cÅ ⁻³
Min. peak in final diff. map	$-0.47 \mathrm{e}\mathrm{\AA}^{-3}$	-0.46 cÅ ⁻³

TABLE	I	Crystal	data	and	structure	refinement	details	for	[Cu(BPT)2]ClO4	(1)	and
[Zn(BPT)2](ClO ₄) ₂ (2)								

Y.T. FAN et al.

2.222(2)	Cu-S(2)	2.292(2)	Cu-N(1)	1.994(4)
2.101(4)	S(1)-C(6)	1.678(5)	S(2)-C(17)	1.679(5)
1.328(6)	N(1)-C(5)	1.354(7)	N(2) - C(1)	1.404(6)
1.344(6)	N(3)-C(6)	1.358(6)	N(3) - C(7)	1.401(6)
119.85(7)	S(1) - Cu - N(1)	101.6(1)		
109.2(1)	S(2)-Cu-N(1)	120.6(1)		
90.1(1)	N(1)-Cu-N(5)	115.6(2)		
105.0(2)	Cu-S(2)-C(17)	95.0(2)		
126.4(3)	Cu - N(1) - C(5)	116.8(4)		
116.8(4)	C(1) - N(2) - C(6)	135.4(4)		
131.0(4)	C(7) - N(4) - C(11)	118.2(5)		
120.9(3)	Cu - N(5) - C(16)	122.7(3)		
2.263(1)	$Zn(1)-S(1)^*$	2.263(1)	Zn(1) - N(4)	2.029(4)
2.029(4)	S(1) - C(6)	1.718(4)	N(1) - C(1)	1.362(6)
1.342(6)	N(2) - C(6)	1.356(6)	N(3)-C(6)	1.342(6)
1.348(5)	N(3)-C(7)	1.394(6)	., .,	
118.70(10)	S(1)-Zn(1)-N(4)	100.1(1)		
116.9(1)	$S(1)^* - Zn(1) - N(4)^*$	100.1(1)		
116.9(1)	$N(4) - Zn - N(4)^*$	104.1(2)		
104.1(2)	Zn(1) - N(4) - C(7)	126.9(3)		
114.6(3)				
	2.222(2) 2.101(4) 1.328(6) 1.344(6) 119.85(7) 109.2(1) 90.1(1) 105.0(2) 126.4(3) 116.8(4) 131.0(4) 120.9(3) 2.263(1) 2.029(4) 1.342(6) 1.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE II Selected bond lengths (Å) and bond angles (°) for complexes (1) and (2)

RESULTS AND DISCUSSION

Synthesis of [Cu(BPT)₂]ClO₄ and [Zn(BPT)₂](ClO₄)₂

In the synthesis of complex (1), we found that reaction of $Cu(ClO_4)_2$ with insufficient BPT produced a light orange yellow powder which was not a pure compound. When heated with excess BPT in methanol, the powder dissolved. Upon cooling and standing for several hours at room temperature, shining red crystals were obtained. The compound was identified as (1) by elemental analysis and X-ray crystal structure. Typically, treatment of $Cu(ClO_4)_2$ with an excess of BPT in CH₃OH directly gave red crystals of (1). In the formation of the complex, we observed a change of colour of solution from blackish green to orange red, confirming the existence of oxidation-reduction reactions. Cu(II) ion was reduced to Cu(I) ion. If we used Cu₂O to react with HClO₄ and BPT, the same product was obtained. We also found that complex (2) can be conveniently prepared by reaction of Zn(ClO₄)₂ with BPT in good yields.

Thermoanalyses

The TG-DTA of BPT and its complexes was determined in the air. There is an endothermic peak at 221°C on the DTA curve of complex (1), but

Atom	x/a	y/b	z/c
Cu()	0.47788(7)	0.24560(4)	0.86781(8)
Cl()	0.8963(1)	0.25567(9)	0.4464(2)
S(1)	0.6537(1)	0.28915(10)	0.8099(2)
S(2)	0.5186(2)	0.1719(1)	1.0627(2)
O(1)	0.8900(9)	0.3087(5)	0.3432(8)
O(2)	0.904(1)	0.1572(4)	0.3944(8)
O(3)	0.764(1)	0.250(2)	0.413(2)
O(3')	0.843(4)	0.286(1)	0.560(4)
O(4)	1.028(1)	0.230(2)	0.457(3)
O(4')	0.967(3)	0.297(1)	0.583(2)
NÌÌ	0.3492(4)	0.3613(3)	0.8615(5)
N(2)	0.4891(4)	0.4517(3)	0.7894(5)
N(3)	0.6866(4)	0.4323(3)	0.7132(5)
N(4)	0.5660(4)	0.5776(3)	0.6788(5)
N(5)	0.4037(4)	0.1178(3)	0.7106(4)
N(6)	0.5896(4)	0.0310(3)	0.8406(4)
N(7)	0.7295(4)	0.0479(3)	1.0832(4)
N(8)	0.8166(4)	-0.0770(3)	0.9147(5)
cin	0.3700(5)	0.4408(3)	0.8287(5)
C	0.2749(6)	0.5185(4)	0.8273(6)
ca	0.1538(6)	0.5138(4)	0.8596(7)
C(4)	0.1307(6)	0.4318(5)	0.8939(8)
còs	0.2289(7)	0.3587(4)	0.8944(7)
Ciá	0.6021(5)	0.3962(3)	0.7705(6)
cin	0.6744(5)	0.5172(4)	0.6655(5)
Cit	0 7762(6)	0.5341(4)	0.6060(7)
C(0)	0.7619(7)	0.6178(5)	0.5594(7)
CIII	0 6492(7)	0.6812(4)	0 5719(7)
CIII)	0.5539(6)	0.6581(4)	0.6302(6)
Cil2	0 4691(5)	0.0337(3)	0.7214(5)
C(13)	0.4299(5)	-0.0517(3)	0.6162(6)
C(14)	0.3178(6)	-0.0499(4)	0.4948(6)
CUS	0.2462(6)	0.0355(4)	0.4824(6)
CUS	0.2910(6)	0 1165(4)	0 5914(6)
CUT	0.6147(5)	0.0793(4)	0.9873(6)
C(18)	0.8210(5)	-0.0325(4)	1.0564(6)
C(19)	0.9104(6)	-0.0594(4)	1.1822(6)
C(20)	0.9991(6)	-0 1365(5)	1 1530(9)
CON	0.9990(6)	-0 1843(5)	1 0072(9)
C(22)	0.9064(6)	-01531(4)	0.8931(7)
(22)	0.5004(0)	-0.1331(+)	0.0221(7)

TABLE III Final atomic coordinates for (1)

without corresponding weight loss in the TG curve (melting point). Two strong exothermic peaks at 261°C and 600°C on the DTA curve have corresponding weight losses of 62.5% and 27.5%. The residue is thus Cu_2O . In the DTA curve of complex (2), there are one weak exothermic peak at 230°C, two moderate exothermic peaks at 260°C and 310°C, and one strong exothermic peak at 598°C. Complex (2) keeps losing weight from 230°C to 800°C. BPT melts endothermally at 160°C, then decomposes endothermally at 197°C.

Y.T. FAN et al.

Atom	x/a	y/b	z/c
Zn(1)	1.0000	0.3569(1)	0.2500
Cl(1)	1.33762(8)	0.4989(2)	0.11181(4)
S(1)	0.9511(1)	0.5401(3)	0.18880(5)
O(1)	1.3022(3)	0.6965(7)	0.0965(2)
O(2)	1.3405(3)	0.3517(8)	0.0759(2)
O(3)	1.4274(3)	0.5202(8)	0.1297(2)
O(4)	1.2846(3)	0.4196(7)	0.1458(1)
N(1)	1.1054(3)	0.3990(7)	0.0650(1)
N(2)	1.0168(3)	0.5942(7)	0.1126(1)
N(3)	1.0827(2)	0.3128(6)	0.1497(1)
N(4)	1.0876(2)	0.1587(6)	0.2229(1)
C(1)	1.1463(4)	0.3846(9)	0.0262(2)
C(2)	1.1453(4)	0.546(1)	-0.0047(2)
C(3)	1.1026(4)	0.732(1)	0.0049(2)
C(4)	1.0583(4)	0.7517(9)	0.0436(2)
C(5)	1.0622(3)	0.5798(9)	0.0729(1)
C(6)	1.0229(3)	0.4699(7)	0.1494(1)
C(7)	1.1110(3)	0.1582(7)	0.1805(1)
C(8)	1.1690(3)	0.0022(8)	0.1650(2)
C(9)	1.2023(3)	-0.1529(8)	0.1940(2)
C(10)	1.1781(3)	-0.1510(8)	0.2378(2)
C(11)	1.1210(3)	0.0039(8)	0.2509(2)

TABLE IV Final atomic coordinates for (2)

TABLE V Selected IR data (cm^{-1}) for BPT, $[Cu(BPT)_2]ClO_4$ and $[Zn(BPT)_2](ClO_4)_2$

Compound	ν _{N-H}	$\nu_{C=N(ring)}$	<i>₩CI0</i>	
BPT ICu(BPT)-IClO	3224, 3195 3274	1603 1630, 1602	1096	
[Zn(BPT) ₂](ClO ₄) ₂	3253, 3120	1645, 1610	1096	

IR Spectra

Selected IR data for BPT, complexes (1) and (2) are given in Table V. Vibrations around 3200 cm^{-1} are associated with N-H stretching. The $\nu_{C=N(ring)}$ vibration is observed at 1603 cm^{-1} for BPT, $1630, 1602 \text{ cm}^{-1}$ for complex (1) and $1645, 1610 \text{ cm}^{-1}$ for complex (2). Both complexes exhibit two $\nu_{C=N}$ peaks, indicating that only one pyridine ring participates in the formation of the complexes. In addition, there is a strong peak at 1096 cm^{-1} from ClO_4^- in the IR spectra of complexes (1) and (2), entirely consistent with free ClO_4^- .

Crystal Structures of [Cu(BPT)2]ClO4 and [Zn(BPT)2](ClO4)2

The structure of the complex ion $Cu(BPT)_2^+$ is shown in Figure 1. Two S atoms and two N atoms from two BPT units, respectively, coordinate to

FIGURE 1 The molecular structure of (1) showing the atom numbering scheme.

the Cu atom and form two six-membered rings. Cu exhibits a distorted tetrahedral coordination environment. The Cu atom deviates from one coordination ring plane [ring I: N(1), C(1), N(2), C(6), S(1), Cu] by about 0.154 Å, and from the other [ring II: N(5), C(12), N(6), C(17), S(2), Cu] by about 1.338 Å. The dihedral angle between the two distorted ring planes is 77.85°.

The bond lengths Cu-N(5) (2.101 Å) and Cu-S(2) (2.292 Å) are much longer than Cu-N(1) (1.994 Å) and Cu-S(1) (2.222 Å). Moreover, the bond angle N(5)-Cu-S(2) (90.1°) is much smaller than N(1)-Cu-S(1) (101.6°). This may result from steric tension between the two BPT ligands.

Two BPT units contain four N atoms, N(1), N(4), N(5) and N(8). N(1) and N(5) coordinate with Cu. N(4) and N(8) form hydrogen bonds, N(4) \cdots H(5)-N(2) or N(8) \cdots H(15)-N(6). N(4) \cdots H(5) and N(8) \cdots H(15) distances are 1.972 and 1.894 Å, respectively. The two Py rings from one BPT unit have a torsion angle of 9.28°. The torsion angle of the other two Py rings is 37.41°.

Complex (2) has a similar structure to (1); its skeleton is depicted in Figure 2. The Zn atom also lies in a tetrahedral coordination environment. Zn-S(1) and Zn-N(4) bond lengths are the same as those of $Zn-S(1)^*$ and $Zn-N(4)^*$, and the six bond angles S(N)-Zn-N(S) range from 100.1° to 118.7°. There is no hydrogen bond in the complex.

FIGURE 2 The molecular structure of (2) showing the atom numbering scheme.

Acknowledgements

This research was supported by the National Natural Science Foundation of China.

Supplementary Data

Full lists of crystallographic data are available from the authors upon request.

References

- X.X. Zhou, Y.M. Liang, F.J. Nan and Y.X. Ma, *Polyhedron*, 11, 447 (1992).
 Y. Omote, *Bull. Chem. Soc. Japan*, 46, 2896 (1973).
- [3] B. Grag, Inorg. Chim. Acta, 170, 177 (1990).
- [4] B.M. Badiger, S.R. Patil and S.D. Angadi, Synth. React. Inorg. Mat.-Org. Chem., 16, 201 (1986).
- [5] L.X. Zhang, Z.Y. Zhang and F.L. Zeng, Gaodeng Xuexiao Huaxue Xuebao (Chinese), 11, 148 (1990).
- [6] G. Bhagwansingh, Inorg. Chem. Acta, 170, 177 (1990).
- [7] Y.T. Fan, C.L. Ran and B.L. Lu, Chin. Nucl. Radiochem., 18, 33 (1996).
- [8] teXsan: Crystal Structure Analysis Package (Molecular Structure Corporation, Texas 1985 and 1992).